Exam Seat No:_____

C.U.SHAH UNIVERSITY Winter Examination-2022

Subject Name: Advanced Real Analysis

Subject Code: 5S	C03ARA1	Branch: M.Sc. (Mathematics)		
Semester: 3	Date: 21/11/2022	Time: 11:00 To 02:00	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
	a.	True/False: Every σ – finite measure is a finite.	(01)
	b.	Let (X, \mathcal{A}) be a measurable space if $\lambda \& \mu$ are two measure on (X, \mathcal{A}) with	(02)
		$\lambda \perp \mu$ and $\lambda \ll \mu$ then $\lambda = 0$.	
c.		Define: Absolutely continuous measure	(02)
	d.	Write chain rule for Radon-Nikodym derivative.	(02)
Q-2		Attempt all questions	(14)
	a.	State and prove Monotone convergence theorem.	(10)
	b.	Let (X, \mathcal{A}, μ) be a measure space and $E_i \in \mathcal{A}$, $E_i \supset E_{i+1}$. Let $\mu(E_1) < \infty$ then	(04)
		$\mu\left(\bigcap_{n} E_{n}\right) = \lim_{n \to \infty} \mu(E_{n}).$	
		OR	
Q-2		Attempt all questions	(14)
	a.	State and prove Lusin's theorem.	(08)
	b.	Let S be a non-negative simple measurable function on a measure	(04)
		space (X, \mathcal{A}, μ) . If $\rho(E) = \int_{E} S d\mu$, $E \in \mathcal{A}$ then ρ is a measure on (X, \mathcal{A}) .	
	c.	State Fatou's lemma.	(02)
Q-3		Attempt all questions	(14)

a. State and prove Hahn-Decomposition theorem.

(07)

	b.	State and prove Lebesgue Dominated Convergence theorem.	(05)
	c.	Define: Mutually singular measures	(02)
		OR	
Q-3		Attempt all questions	(14)
	a.	State and prove Jordan Decomposition theorem.	(08)
	b.	Prove that countable union of positive set is positive set.	(04)
	c.	Define: Signed measure	(02)
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a.	Give an example of self-conjugate number.	(01)
	b.	State Tonelli's theorem.	(02)
	c.	Define: Locally compact	(02)
	d.	Define: Norm in $L^{p}(\mu)$	(02)
Q-5		Attempt all questions	(14)
	a.	State and prove Radon-Nikodym theorem.	(10)
	b.	If $f, g \in L^{p}(\mu)$ then prove that $ f + g _{p} \le f _{p} + g _{p}$.	(04)
		OR	
Q-5		Attempt all questions	(14)
	a.	State and prove Lebesgue Decomposition theorem.	(08)
	b.	State and prove Holder's inequality.	(06)
Q-6		Attempt all questions	(14)
	a.	State and prove Caratheodory theorem.	(07)
	b.	Let (X, \mathcal{B}, μ) be a finite measure space and g be an integrable function such that	(05)
		for some constant M , $\left \int g\phi d\mu\right \leq M \left\ \phi\right\ _p$ for all simple functions ϕ then $g \in L^q$.	
	c.	Define: Product measure space	(02)
		OR	
Q-6		Attempt all Questions	(14)
	a.	State and prove Riesz representation theorem.	(09)
	b.	Let <i>X</i> be a normed space then <i>X</i> is complete iff every absolutely summable series is summable.	(05)

